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Decomposition of Permutations
in relation to Side-Channel Countermeasures (1/3)

2010 Present 4x4 S-box decomposition on 2 quadratic S-boxes
“Side-Channel Resistant Crypto for less than 2300 GE” A. Poschmann et al.

2012 All 4x4 and 3x3 S-boxes decompositions on quadratic S-boxes
“Threshold Implementations of all 3x3 and 4x4 S-boxes” B. Bilgin et al.
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Here the cubic S(.) can be decomposed on 2 quadratic F(.) and G(.) S-boxes.

Decomposition goal — reduce the degree



Decomposition of Permutations
in relation to Side-Channel Countermeasures (2/3)

2012 Factorization of S-boxes
“Enabling 3-share Threshold Implementations for any 4-bit S-box” T. Kutzner et al.
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Again the cubic S(.) can be decomposed on 3 quadratic S-boxes.

Factorization goal — again reduce the degree
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in relation to Side-Channel Countermeasures (3/3)

2012 Polynomial evaluation of S-boxes, cyclotomic class and parity split addition chains

“Higher-order masking schemes for S-boxes” C. Carlet et al.

2013 Divide-and-Conquer Strategy for Polynomial evaluation
“Analysis and improvement of the generic higher-order masking scheme of FSE 2012” A. Roy, S. Vivek

2014 Generalized Divide-and-Conquer Strategy for Polynomial evaluation
“Fast Evaluation of Polynomials over Finite Fields and Application to Side-channel Countermeasures”

C. Carlet et al.

2015 Generalized Factorization for Polynomial evaluation
“Algebraic Decomposition for Probing Security” C. Carlet et al.



The role of decomposition in Side-Channel
countermeasures

Tl (masking) of nonlinear permutations

No efficient, general algorithm known
Lower algebraic degree more easy to secure

Affine-equivalent S-boxes have affine-equivalent secure
implementations (masking)

Database of permutations with their Tl implementations



Decomposition of Permutations

Theorem (Carlitz, 1953)

Given a finite field GF (q) with q > 2 then all permutation polynomials over it are
generated by the special permutation polynomials x2~2 (the inversion) and
ax + b (affinei.e.a,b € GF(q) and a + 0).

Such a decomposition is called the Carlitz rank

Carlitz length: the number of inversions in this decomposition



Our goals

We target a decomposition on quadratic (or cubic) permutations.
When n = 4 no quadratic decompositions of the inversion exist.
We extend these results for any permutation in GF(2") withn = 3 ... 16.

We are looking for decompositions on quadratic permutations of important
cryptographic S-boxes forn = 3 ... 16 - AB and APN functions.



Method for finding the decomposition

Our method finds decomposition of the inversion on quadratic (or cubic)
power permutations.

Algorithm (high level):

Create a “basis” of quadratic (or cubic) power permutations (monomials x*)

Optimized search for
> Decomposition using only the degree of the monomials k

> At the same time keeping track of the length of the decomposition
o Optimization to look for decompositions with smaller length only

The result is a list of decompositions with the smallest length



Method for finding the decomposition

Recall x2"72= x~1 and x* is a permutation of GF(2") if and only if gcd(k,2" — 1) = 1

Hence for n = 2™ no quadratic power permutations exist.

The (algebraic) degree of a permutation x* is equal to wt (k).

k 2

Permutations x* and x2'. x¥ are affine equivalent since x "are linear permutations.
When n = 12 the only quadratic monomial power permutation is x17,
but it has even parity while the inversion has an odd parity, hence

no decomposition of the inversion on quadratic power permutations whenn = 12.



Method for finding the decomposition

Our Algorithm finds decomposition of the inversion on quadratic (or cubic) power permutations.

-Build a set CP of power permutations not belonging to the same cyclotomic class.
Take the subset of quadratic CP, (or cubic CP.) power functions

-For each x* from CP,compute the order of k as the smallest power m; s. t. wt(k™ mod 2" — 1) = 1
-Denote the power set of k by P(k) = {k*mod 2" — 1 | i = 1,...,m,}, add P(k) to a set P
-Enumerate the representatives k inPe.g. k; fori = 1,..., [ = |P|

-Compute z(j, j1, -, j;) = 2] %:1 kl-ji mod 2" — 1, for j, = 0,.mg, —1,j = 0,..,n—1and check
whether it is equal to 2 — 2

-If found, then the smallest Z%zl(ji mod my_ ) gives the shortest decomposition.
The complexity of this exhaustive search isn ]’[ﬁ=1 my,

-If exhaustive search is not feasible (n = 13,15 and 16) search can be optimized by restricting the

decomiosition Ienith i.e. restrictini m||



An example

Letn =9, then there are [ = 4 quadratic monomials with powers k = 3,5,9 and 17,
where onIy x3 has odd parity.

The order m,, /i.e. wt(k™ mod 2" — 1) = 1/is 12,72, 6 and 24, respectively.

Compute Z(J,jp e J) = 2/ 1 ki Jt mod 2" — 1, forj,=0,..,my, —1,
j=20,..,n—1and check whether it is equal to 2™ — 2.

When found, then the smallest Z —1(j; mod mk ) gives the shortest decomposition.
The complexity of this exhaustive search is n []'_, my,.

Forn = 9 we have: x 1= x?, x17.x°. x3, the smaIIest decomposition length is 3 and

the worst complexity is 9 * 12 * 72 * 6 * 24 = 220



Decomposition of inversion

All decompositions we found for the inversion are with minimal length.

For n not divisible by 4 we found decompositions on quadratic permutations

for n divisible by 4 we found decompositions on cubic permutations.

We acknowledge that Amir Moradi has found the particular set of cubic decompositions for AES,

i.e. the x?>* case (personal communication).
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Generic decomposition of all permutations

Theorem. For 3 < n < 16 any permutation can be decomposed in quadratic permutations, when
n is not divisible by 4 and in cubic permutations, when n is divisible by 4.

The Theorem of Carlitz uses a subset of affine transforms of the type ax + b, where a, b are
field elements.

. . — i
Recall an affine permutation can also be presented as Z?zol (a; x?).

Since Carlitz considers only ax + b, by using affine permutations instead we can achieve shorter
Carlitz length.

The classes with even/odd Carlitz length have even/odd parity.



Decomposition of particular permutations

For 5 bit S-boxes: AB;= x3, AB, = x>, AB3= x’, AB,= x'1,ABs = x1°

AB3; = x*.x%.x°, AB, = x8. x3.x°%. x°, ABs = x°. x3, i.e. decompositions of length 2, 3
and 2 and those are the shortest decompositions.

We also applied the Carlitz decomposition for all 3 and 4 bit S-boxes

For n = 3: 1 class with length 0, 1 class with length 1, 1 class with length 2 and 1 class
with length 3

For n = 4: 1 class with length 0, 1 class with length 1,59 (45) with length 2,150 classes
with length 3 and 91 (—5) with length 4 (among them all 6 quadratic classes)



Conclusions and open questions

We have shown that any permutation (for 3 < n < 16 ) can be decomposed in
guadratic permutations, when n is not divisible by 4 and in
cubic permutations, when n is divisible by 4.

Open questions:
° Can the inversion be decomposed on quadratic permutations for
n divisible by 4 (and n > 4)?
o Can we find shorter decomposition length?



